Support

22 Support Entries

Problem:

After main switch off and on again, HMI piece counter values and settings are lost or old recipes are loaded.

Possible Causes & Resolutions:

  • IPC has not shut down correctly.Check the IPC after you switched off the main switch: Normally it will continue to run for at least 30 seconds to shut down correctly. If LED’s of IPC goes off within a few second, the battery of the UPS – unit is dead and needs to be replaced.

 

Problem:

During production, the error message “over temperature upper current conductor” appears. This means that the cooling is no longer sufficient to keep the upper current conductor constantly below 40 degrees Celsius.

Possible Causes & Resolutions:

If the cooling unit is working properly (temperature and pressure is OK) and no flow switches are giving an error, then contamination is most likely the cause of the problem.

Clean the cooling circuit, especially the cold-water circuit in this case, including the cooling unit. Check the water level in the cooling unit and top up if necessary and replace lubricant (if PowerROLL – coolant or DISCON is used) and clean the cooling system as recommended every 6 months.

Cooling emulsion exchange and cleaning

Problem:

Machine stops and message „Pacemaker: Profibus communication error“ is displayed.

Possible Causes & Resolutions:

  • Cooling water valve: Wrong type of valve or plug without protective circuit (suppressor). The voltage peaks can cause interferences in the Pacemaker electronics. Always use the original plug and valve type.
  • Profibus plug: On the plug of first and last client of profibus system the termination resistant must be set to ON. Otherwise interference may occur.
  • Profibus cables: Check the position of the cables in the control unit. If they are close to contactors, high voltage peaks can create interferences.

Problem:

The HMI cannot be started and the browser shows „NOT FOUND, The requested URL /en/default.htm was not found on this server“.

Possible Causes & Resolutions:

Not connected to Canman Wifi (only for wireless connected iPad’s): Check the wifi settings. Choose Canman wifi and try again.

IPC has not shut down correctly: In this case probably the HMI software can’t start up automatically by restarting the machine.

Check the IPC after you switched off the main switch: Normally it will continue to run for at least 30 seconds to shut down correctly. If LED’s of IPC goes off within a few second, the battery of the UPS – unit is dead and needs to be replaced.  Contact Canman for online support to restart HMI.

Possible reason:

  • Check the blank cutting tolerances (can be supplied by Can Man): If the cutting tolerances are to big, the blanks will create all kind of downstacking errors.
  • Check the burrs on the blank: If the burrs are to big, the blanks will create all kind of downstacking errors.
  • Check the setting of the separating air: If the separating air is to low, the blanks can not being pulled down correctly. Try with more or less separating air.
  • Clean the slider of the Linmot pusher according the manual.
  • Magnets in the base plate might brake the blanks to much: Can Man does equip each base plate with 4 or max 6 magnets, depending on the the blank size. Remove eventually 2 magnets.
  • Check the clearance of the first rollformer roller pair: The clearance between the lower and upper roller might be too small. Adjust the value according manual.

 

 

  • Check the vacuum-stop point: The process to stop the vacuum must be activated by the mechanism around 3 mm before the blank arrives at the base plate. Please check the manual how to set.
  • Check if the supporting air-pressure to stop the vacuum is adjusted correctly: Check the value / setting according the manual.

The HMI of Can Man machines is optimized for an iPad, but as an alternative, a computer, laptop or another tablet with a browser can be used as well.
How to:
  1. Connect your device to the WLAN „CM_SMARTControl“. If you don’t have a Wi-Fi connection on your machine, connect a LAN cable to the router.
    Note: The Wi-Fi is password protected! Contact Can Man by opening a new ticket or ask your superior.
  2. Open the browser. Supported browser are Safari, Chrome or Firefox.
  3. Enter the correct IP address:
    Welder ➔ http://192.168.10.10
    Welding monitor ➔ http://192.168.10.11
    Slitter ➔ http://192.168.10.13
    Feeder ➔ http://192.168.10.15

Note: If you use a new iPad the icons for the machine type can be produced, when you tap on “Add to home screen“ button.
page54image3824832

Problem:
Display shows „Could not activate iPad“

Possible causes & resolutions:

  • No internet connection > Check network connection of machine.
  • Firewall blocks connection to iPad > Try to connect the iPad to other Wifi without firewall, for example hot spot of mobile phone.
  • Try to make a reset by holding down the home and power button simultaneously for a few seconds until the Apple logo appears. Don’t worry, the iPad doesn’t have any data inside, it only displays the values from the browser. Can Man does not use an Apple ID to activate the iPad’s, so the iPad is resettable.
  • iPad might be defective > We will offer new one or you organize it locally.

For connecting an alternative display / PC, please have a look at the separate FAQ.

Please follow the below instructions carefully:

  1. Cooling unit for cold water (for both welding rollers):
  • The cooling emulsion must be changed yearly, but more preferably every 6 months. Follow the X7 manual if you have to change the emulsion !
  • The filter cartridge of 50 µm needs to be replaced monthly ! Follow the X7 manual if you have to the filter cartridge !
  • Check the level of the cooling emulsion on the internal tank. If you have to refill the tank, follow the X7 manual to get the correct mixing ratio for the emulsion, and fill the tank. Note: If the water level is too low, the chiller should show an error message, and the X7 should stop and show an error on the iPad !

 

  1. Cooling water / emulsion distribution station on X7:
  • Run some (5 to 10) can bodies and control the water pressure on the manometer: 5.0 bar is the min. required water pressure !
  • Run some (5 to 10) can bodies and control the water flow on the flowmeter S26 (2. From right side): 5.0 liter per minute is the min. water flow.
  • Note: The water pressure switch S120 is set to > 4.0 bar. If there is the error message “Error S120” on the iPad , first check the water pressure on the manometer, and if it’s below 4.0 bar check the cooling unit again !

 

  1. Weld roll ø 42 / 49 / 54 / 62 / 90 mm and lower weld arm:
  • It’s possible that the cooling circuit from waterflow meter S26 to lower weld roll, and back to the outlet on the water distribution, is blocked:

Take off the lower weld roll, unplug the grey water tube ø 10 mm labeled with “àWR” directly at the flow switch S26, and blow into the tube with air pressure. Check the out-going air-pressure at the free hole in the lower weld arm (supply for lower weld roll). If the circuit is free, you feel an equal air pressure (like on the output of the air gun) on your finger tip. If you recently took off the lower weld arm, there might be a problem with one or both o-ring seals between arm and upper bus bar:

 

Please check them if needed !

  • Now unplug the grey tube ø 10 labeled with “WR à” on the water distribution and blow into the tube with air pressure. Check the out-going air-pressure at the free hole in the lower weld arm (exit of lower weld roll). If the circuit is free, you feel an equal air pressure on your finger tip
  • If you re-install the lower weld roll again, make sure that the arrow “running / turning direction” is showing into the right direction.

Before re-connecting both grey tubes ø 10 mm, blow into one tube again by air-pressure, and feel the equal air-pressure on the other tube by your finger tip. If it’s ok, correctly connect both tubes again.

 

  1. Copper wire / copper wire profiling unit:
  • Measure the copper wire profile after the profiling unit on various positions (within around 300 mm). Check the correct width in the X7 manual. The tolerance must be within 0.03 mm !
  • Please check if the wire guiding wheel in front of the lower weld roll is broken. If it’s broken, replace it by a new one. Make sure you choose the correct size 1.90 or 2.30 mm !
  • Please check if the copper wire tension is correct. Set the correct tension according X7 manual !

 

  1. Welding parameters:
  • Please check the weld pressure. Set the correct welding pressure according X7 manual. The range should be between 40 and 50 daN.
  • Please check the welding frequency. Set the correct value according the recommendation in the iPad !
  • Please check the welding overlap. The welded overlap should be nosepiece overlap + 0.1 mm !
  • Check if the IR-Sensor graph of the Qualimaker 2™ on the iPad are within the correct range and straight, which means that the crown and exit conveyor settings are correct:

  1. Other possible errors:
  • If the copper wire gets burned, check if the upper and lower weld roll are touching each other without a blank between. Press the button on the main-aluminium plate to close the welding roller and test it.

Problem:

iPad does not connect to the machine. Screen remains gray and shows no values.

Possible Causes & Resolutions:

  • Connection via Wi-Fi
    • In the settings, check whether the iPad has connected to the correct Can Man Wi-Fi
    • If no Can Man Wi-Fi is visible, check router/wireless access point.
      ➔ Restart router/wireless access point. If still no Can Man Wi-Fi is visible, the router/wireless access point has lost the settings or is broken. Contact Can Man via by opening a new ticket.
  • Connection via Cable
    • Check all plug connections of the network cable between IPC and iPad
    • Check iPad adapter power supply. The adapter must always be powered, otherwise the connection will not work.

Battery of IPC is empty when:

  • System Date and Time (Error Log) not correctly displayed and getting lost when powering off the IPC.

 

To Do:

Download regrooving datasheet

 

ATTENTION:
If you have a ceramic Z-bar e.g. X7 welder, please not that the ceramic Z-bar is very fragile.
In case you have to exchange or to replace the Z-bar, never use a hammer or apply excessive force!

 

Click here for the status LED’s of the Beckhoff PC and how to access the PC in case of a trouble shooting.

 

  • If the Led are not switching off after machine power off (wait at least 5min. !), remove the X101 plug on the IPC and plug it back after some seconds.

 

  • The fan unit can be removed. Check whether the fan is correctly mounted (screwed).
  • The fans can also be removed and cleaned if dirty.
  • Replace the defective fan unit!

 

Download PDF

An overvoltage suppressor (or surge suppressor) is an appliance designed to protect electrical devices from voltage spikes. A surge suppressor attempts to regulate the voltage supplied to an electric device by either blocking or by shorting to ground voltages above a safe threshold.

These surge suppressors are built in to the latest Pacemaker models and machine controls (from 2009).

Check, if one or more modules of the surge suppressors are red/defect. Replace the red modules.

Attention!!!

Do not bridge the signalling contacts and run the machine with defective red modules because they no longer protect the system from voltage peaks!!!
If the modules are defective, check the main supply. Measure and check all voltages between the phases and all phases to earth before exchange the modules and restart the machine.

Report all steps, new or different settings, and old and new production parameters (can size, cpm, weld speed, weld current, weld frequency, current wave-form and transformer step) for an easier overview and follow-up ! (www.canman.ch /Open new ticket and add your document)

Note on which tin-plate parameters (thickness, hardness, tin coating inside / outside, rolling direction, BA or CA, supplier, printed or not) such faults occur, and on which tin-plates not !

Basic parameters & settings to be checked first

  1. Tin-plates must be cutted within the allowed tolerances:
    • Measure the tin-plates and report if out of tolerance!
    • Follow sheet „blank-cutting tolerances“! (www.canman.ch/SUPPORT/Canmaking/002)
    • Are all tin-plate parameter clear and noted: Thickness, hardness, tin coating in- and outside, rolling direction, BA or CA, supplier, printed or not
  2. Can-bodies must be correctly rollformed:
    • Not conical and best roundness must be reached!
    • Overlap of both tin-plates edges:
      • ø 52 ~ 5 mm
      • ø 99 ~ 15 mm
      • ø 153 ~ 30 mm
      • ø 284 ~ 60 mm
  3. The copper wire must be correctly profiled and the surface not damaged:
    • The width of the profiled copper wire shall always be 0.05 mm smaller than the profile-groove in the weld rollers!
    • Measure the width of the profiled copper wire within around half a meter on several position, and note the variations. Maximum difference of 0.05 mm is allowed. If you measure more, check the concentricity of the profiling rings.
    • Change the copper wire profiling rings or idler/guide wheels if the surface of the copper wire shows a damage.
  4. Both weld rolls must be regrooved after its regular groove life-span:
    • To avoid unexpected heavy weld faults, it is recommended to implement the total piece-counter and the regrooving interval into the production order!
    • As an example:
      • Upper weld disc ø 90 mm to be regrooved after 3 mio cans (interval depends on, type of welder, type of weld roll and welding speed).
      • Lower weld roll ø 62 mm to be regrooved after 2 mio cans.
      • Example: Total piece counter at production start at 28 mio welded can bodies, upper weld disc has been regrooved at 25 mio, therefore to be regrooved now! Lower weld roll regrooved at 27.5 mio, therefore to be regrooved at 29.5 mio.
    • After every regrooving, weld roll and / or z-bar must be repositioned: Use the correct tools to reset the lower weld roll and/or nose-piece, and the upper welding roller!
  5. The z-bar must be clean in and outside – and not worn -, calibration crown must be clean, and all pre-calibration rollers shall turn easily:
    • A dirty z-bar may not be well insulated, therefore the risk of wear is higher and the weld current is flowing over z-bar and tin-plate to the weld center!
    • Note: The insulation of the secondary circuit should be controlled yearly!
    • Non-turning pre-calibration rollers can create body-offset and inconstant can gap!
  6. The calibration crown center must be correctly positioned to the weld center:
    • The center of the crown must stay between 3 – 0.5 mm before the center of the lower weld roll (in weld direction seen).
  7. The position and speed of the exit conveyor (all conveyors which transport the can body out of the weld center) must be aligned perfectly.
    • Both belts of any V-Shape conveyor need to have a gap of 0.3 – 0.5 mm to the can body. If available use a setting mandrel instead of a can body. The alignment of the conveyor must be absolutely parallel to the weld direction!
    • The gap between two can bodies on the exit conveyor should not be higher than10 – 20 mm! (if can gap is 1.0 – 3.0; see „can gap“ in point 12.)
    • A driven diabolo roller / bottom conveyor after the diabolo rollers must run the same speed like the copper wire!
  8. Both tin-layers must be centered and parallel to the copper wire:
    • That means that all mechanical settings are correct!
  9. The copper wire tension and elongation must be correct:
    • Make sure that the air-pressures for the pneumatical cylinders are set correctly, or the copper wire is in the right groove of the wire drive disc (Soudronic m/c’s only).
    • Measure the copper wire elongation after the lower weld roll, or after the weld roll before the wire chopper: Elongation varies under normal conditions between 0 – 4 % of the can body height.
    • A sufficient copper wire tension is important to avoid a slipping copper wire on the weld rolls!
  10. The can body overtravel must fit:
    • Set the overtravel according manual / scale on the transport carriage!
    • Measure how many mm the can body will be pushed over the center of the weld rolls.
  11. The welding pressure must be set correctly:
    • Welding pressure for Wima welders vary between 35 and 50 kg / daN. Start with ~ 45 kg / daN (if needed check the manual to convert in bar).
    • 50 Hz Wima welders using welding pressure between 35 – 50 kg/daN as well.
  12. The welded overlap must be correct, and on beginning and end within allowed tolerances:
    • Correct welded overlap depending on z-bar:
      • Z-bar of 0.3 mm results in a welded overlap of 0.4 – 0.5 mm
      • Z-bar of 0.4 mm results in a welded overlap of 0.5 – 0.6 mm
      • Z-bar of 0.6 mm results in a welded overlap of 0.6 – 0.7 mm
      • Z-bar of 0.8 mm results in a welded overlap of 0.8 – 0.9 mm
    • If the overlap is not correct, adjust until overlap is correct:
      • Reset the calibration crown if needed with the mandrel. The diabolo-rollers should not have any radial-play!
      • Adjust the overlap according manual.
    • Once the overlap has been set, double check and set the can gap. Increasing the overlap will reduce the can gap, decreasing the overlap will increase the can gap.
    • Weld around 5 cans and measure the gap between the tin-layers. A good can gap measures between 1.0 – 3.0 mm (depending on the can body format). Any variation should be within 0 – 1.0 mm.
  13. The weld current frequency must fit:
    • Welders with a static frequency inverter should have a welding spot length between 0.6 – 1.2 mm.
    • A welder without static frequency inverter should be operated between 8 – 12 m/min. Reducing the welding speed does decrease the welding spot length.
    • The welding spot length should always be as long as possible (by reducing the frequency) to reduce energy and heat in the welding seam and in the welder to a minimum.
    • Main target must be a flexible and smooth welding seam!
  14. The main weld current must be set correctly!
    • How to do:
      • Reduce weld current until cold weld zones appear. Tear-off test must be done at an angle of 30 – 45°, means try to pull-off the top tin plate edge. To be done from each side. Note the weld current value!
      • Increase weld current until hot weld appears. Tear-off test must be done at an angle of 0°, means pull-off the seam only and find out when the seam starts to become fragile. Note the weld current value!
      • Add 2/3 of the weld current difference between cold and hot weld seam to the cold weld seam value, and start the production!
    • Set beginning and end time and beginning and end current!
    • Note: If the welder is running with triangle wave-form, make sure the duty-cycle is between 80 – 90 %. If the welder is running with sine wave-form, make sure the right transformer step has been choosen! Contact us if you are not sure.
  15. The seam-extrusion inside and outside must be equal!
    • If the seam extrusion is bigger inside, reduce the height of the calibration crown. If the seam extrusion is bigger outside, increase the height of the calibration crown.

 

Checklist to Avoid Micro Leaks

Micro leaks can occur within the seam and beside the seam – especially on cold-formed areas like necking, beading, flanging or seaming -, even if all above mentioned basic parameters & settings seems to be correct.

Micro leaks can have various sources: Wrong settings on the welder, tin-plate parameters which support such faults, worn or wrong machineries in the downline, or tin-plate parameters which do not fit to beader, necker, flanger and seamer.

For a better visual understanding put the faulty-can bodies in a water bath, and inspect the leaking area by a microscope. Store the pictures if possible!

  1. Make sure that necker, flanger, beader and seamer are in good condition, and do not stress the weld seam more than needed.
    • For further information check the manuals (check the tin-plate specifications range) or contact the supplier!
  2. Try to weld different tin-plates to understand which tin-plate parameter can be produced without such faults.
    • Rolling-direction parallel to weld seam can increase the occurrence of micro-leaks!
  3. Micro-leaks in and near the seam can be reduced by changing the energy in each welding spot:
    • Reduce the welding frequency within the possible range (see point 13. in above checklist), and set the main weld current again (see point 14. in above checklist). The production cycle (cpm) must probably be reduced to reach a good weld seam. Produce a certain number of cans and test them.
    • Increase the welding frequency within the possible range, and set the current again. Produce a certain number of cans and test them.
    • Reduce the welding pressure to max 45 kg / daN, and set the main weld current again (see point 14. in above checklist). Produce a certain number of cans and test them.
    • Reduce the welded overlap by around 0.10 mm, and set the main weld current (see point 14. in above checklist). Produce a certain number of cans and test them.

 

Checklist to Avoid Flange-Cracks

Flange cracks can occur at the beginning and the end of the seam, even if all above mentioned basic parameters & settings seems to be correct.

Flange cracks can have various sources: Wrong settings on the welder, tin-plate parameters – for instant parallel rolling direction – which support such faults, worn or wrong flanger in the downline, or tin-plate parameters which do not fit to the flanger and or seamer.

For a better visual understanding put the faulty-can bodies in a water bath, and inspect the leaking area by a microscope. Store the pictures if possible!

  1. Make sure that flanger and seamer are in good condition, and do not stress the weld seam more than needed:
    • For further information check the manuals (check the tin-plate specifications range) or contact the supplier!
  2. Try to weld different tin-plates to understand which tin-plate parameter can be produced without such faults:
    • Rolling-direction parallel to weld seam will increase flange cracks, because the seam cracks in line with the rolling direction!
    • Weld tin-plates with cross rolling direction and test them.
  3. Flange cracks can be reduced by changing the energy in each welding spot:
    • Reduce the welding frequency within the possible range (see point 13. in above checklist), and set the main weld current again (see point 14. in above checklist). The production cycle (cpm) must probably be reduced to reach a good weld seam. Produce a certain number of cans and test them.
    • Increase the welding frequency within the possible range, and set the current again. Produce a certain number of cans and test them.
    • Reduce the welding pressure to max 45 kg / daN, and set the main weld current again (see point 14. in above checklist). Produce a certain number of cans and test them.
    • Reduce the welded overlap by around 0.10 mm, and set the main weld current (see point 14. in above checklist). Produce a certain number of cans and test them.
    • Activate the current reduction on the begin and end to reduce the heat in the first few welding spots.
  4. If above listed does not help, some theoretically wrong settings could help:
    • Increase the can gap to have completely different welded begin and end. Produce a certain number of cans and test them, and set back if it didn’t help!
    • Set a slight can-body offset, to bring the current different into the tin-plate. Produce a certain number of cans and test them, and set back if it didn’t help!

Maintenance, cleaning and insulation check (can be used in general for any welder)

Procedure:

  • Recommended to be done when the main Z-bar has to be changed anyway
  • Time to do: 4 – 8 hours for 1 person
  •   Turn the main switch off, make sure the water cooling unit is also off!
  •   Take off the copper wire completely.
  •   Take off internal side seam tubes or internal oxyde tube.

 Tubes have to be insulated in the area of rollformer, to avoid any contact to the ground.

(In the area of the lower welding arm is a simple insulation not possible).
− Take off the grounding cable from the lower copper plate going to the welding transformer

    (Do not forget to place back after you finish).
− Clean the whole secondary circuit as good as possible by rag and compressed air.
 Blow from rollformer side towards overhead exit conveyor, to protect the bearings in the rollformer.

  •   Take off the lower welding arm.
  •   Dismount the main Z-bar including front nosepiece.
  •   Clean both Z-bars, the Z-bar slot in the arm carefully, without using grinding paper, to avoid increasing theinternal width!
  •   Check internal/external full ceramic cross bars for damages, no need to take them off, if they are ok.
  •   Clean the contact surface between arm and the copper plate going to the welding transformer with grindingpaper 400.
  • Use a little flat plate and fold the grinding paper around.
  • Not a must but recommended: Lubricate one of the contact surfaces slightly by copper grease(to avoid humidity in between. If you decide to do, do it on all other contacts)
  • Check the O-Ring (to be done also on all following ones)

− Mount the Z-bar back into the arm and measure the insulation by Ohm-meter > 10 Mega Ohm!

  • We recommend to use a special heat compound to guarantee a better heat transfer from the Z-bar to thewater cooled welding arm!
  • We recommend to use new insulation washers (recommended also on all others).
  •   Check the little yellow full ceramic idler wheel in front of the lower welding roller, make sure screws/nutsare locked, and the circlip is not missing!
  •   Clean also the upper slot in the upper power plate.
  •   Take off the top copper plate between welding transformer and upper power plate (support of the lowerwelding arm). Clean the plate and the brown insulation plate (take care, can easily be broken).
  •   Clean all areas around the upper power plate, especially the area between power plate and copper plategoing to the welding transformer. This area is difficult to reach, when the lower arm is build in.
  •   Clean both areas between upper power plate and the main alumimium plate (devided by two brown

insulation plates).

  •   Clean the area around the big copper plate (going around the shaft of the upper pendulum rollerhead).
  •   Check following insulations (Ohm-meter > 10 Mega Ohm): Each idler wheel to the aluminium plate.

− Check also every bearing. Attention: Most of them have ceramic balls, marked by a red point!

  •   Each body of the copper profiling unit to the aluminium plate.
  •   The body of the big cooling wheel to the aluminium plate.
  •   The twin idler wheels (between rollformer and upper power plate) between itself but also to the aluminiumplate.
  •   Both transport rings, cutting wheel and pressing bearing/ roll of the wire chopper to the aluminium plate(clean up before may be helpful).
  •   The upper power plate to the main aluminium plate.
  •   The front support of the pendulum rollerhead to the aluminium plate.
  •   The welding pressure cylinder to the supporting plate.
  •   The main aluminium plate to the machine frame.
  •   The pendulum rollerhead to the machine frame.
  •   Calibration crown: Clean the calibration crown first.
  •   Each diabolo roller to the main brass plate.
  •   Support of guidance channel/calibration crown:
  •   Take off the whole canbody guidance including the long aluminium supporting plate (T-shape).
  •   Clean the whole area.
  •   Check the insulation between the long steel guide plate and its supports mounted to the frame:Three brown insulation plates underneath the long steel guide plate.
    Two separate brown insulation plates underneath a long steel bar (30/60 x 40 x 400 mm), to be found on the machine frame, in the area below the calibration crown.
  •   Put now back all parts.

 Make sure you are using only stainless steel screws and washers and lubricate the threads again!